Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 24
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
FEBS Lett ; 598(9): 1008-1021, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38605280

RESUMEN

Evolutionarily conserved protein associated with topoisomerase II (PAT1) proteins activate mRNA decay through binding mRNA and recruiting decapping factors to optimize posttranscriptional reprogramming. Here, we generated multiple mutants of pat1, pat1 homolog 1 (path1), and pat1 homolog 2 (path2) and discovered that pat triple mutants exhibit extremely stunted growth and all mutants with pat1 exhibit leaf serration while mutants with pat1 and path1 display short petioles. All three PATs can be found localized to processing bodies and all PATs can target ASYMMETRIC LEAVES 2-LIKE 9 transcripts for decay to finely regulate apical hook and lateral root development. In conclusion, PATs exhibit both specific and redundant functions during different plant growth stages and our observations underpin the selective regulation of the mRNA decay machinery for proper development.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , ARN Mensajero , Arabidopsis/genética , Arabidopsis/crecimiento & desarrollo , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , ARN Mensajero/genética , ARN Mensajero/metabolismo , Regulación de la Expresión Génica de las Plantas , Mutación , Estabilidad del ARN
2.
Life Sci Alliance ; 6(9)2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37385753

RESUMEN

Multicellular organisms perceive and transduce multiple cues to optimize development. Key transcription factors drive developmental changes, but RNA processing also contributes to tissue development. Here, we report that multiple decapping deficient mutants share developmental defects in apical hook, primary and lateral root growth. More specifically, LATERAL ORGAN BOUNDARIES DOMAIN 3 (LBD3)/ASYMMETRIC LEAVES 2-LIKE 9 (ASL9) transcripts accumulate in decapping deficient plants and can be found in complexes with decapping components. Accumulation of ASL9 inhibits apical hook and lateral root formation. Interestingly, exogenous auxin application restores lateral roots formation in both ASL9 over-expressors and mRNA decay-deficient mutants. Likewise, mutations in the cytokinin transcription factors type-B ARABIDOPSIS RESPONSE REGULATORS (B-ARRs) ARR10 and ARR12 restore the developmental defects caused by over-accumulation of capped ASL9 transcript upon ASL9 overexpression. Most importantly, loss-of-function of asl9 partially restores apical hook and lateral root formation in both dcp5-1 and pat triple decapping deficient mutants. Thus, the mRNA decay machinery directly targets ASL9 transcripts for decay, possibly to interfere with cytokinin/auxin responses, during development.


Asunto(s)
Arabidopsis , ARN , ARN Mensajero/genética , Arabidopsis/genética , Citocininas/genética , Ácidos Indolacéticos/farmacología , Factores de Transcripción/genética
3.
PLoS Pathog ; 18(10): e1010918, 2022 10.
Artículo en Inglés | MEDLINE | ID: mdl-36302035

RESUMEN

In order to infect a new host species, the pathogen must evolve to enhance infection and transmission in the novel environment. Although we often think of evolution as a process of accumulation, it is also a process of loss. Here, we document an example of regressive evolution of an effector activity in the Irish potato famine pathogen (Phytophthora infestans) lineage, providing evidence that a key sequence motif in the effector PexRD54 has degenerated following a host jump. We began by looking at PexRD54 and PexRD54-like sequences from across Phytophthora species. We found that PexRD54 emerged in the common ancestor of Phytophthora clade 1b and 1c species, and further sequence analysis showed that a key functional motif, the C-terminal ATG8-interacting motif (AIM), was also acquired at this point in the lineage. A closer analysis showed that the P. mirabilis PexRD54 (PmPexRD54) AIM is atypical, the otherwise-conserved central residue mutated from a glutamate to a lysine. We aimed to determine whether this PmPexRD54 AIM polymorphism represented an adaptation to the Mirabilis jalapa host environment. We began by characterizing the M. jalapa ATG8 family, finding that they have a unique evolutionary history compared to previously characterized ATG8s. Then, using co-immunoprecipitation and isothermal titration calorimetry assays, we showed that both full-length PmPexRD54 and the PmPexRD54 AIM peptide bind weakly to the M. jalapa ATG8s. Through a combination of binding assays and structural modelling, we showed that the identity of the residue at the position of the PmPexRD54 AIM polymorphism can underpin high-affinity binding to plant ATG8s. Finally, we conclude that the functionality of the PexRD54 AIM was lost in the P. mirabilis lineage, perhaps owing to as-yet-unknown selection pressure on this effector in the new host environment.


Asunto(s)
Mirabilis , Phytophthora infestans , Solanum tuberosum , Enfermedades de las Plantas , Phytophthora infestans/genética , Especificidad del Huésped
4.
Plant Cell ; 33(5): 1447-1471, 2021 07 02.
Artículo en Inglés | MEDLINE | ID: mdl-33677602

RESUMEN

Pathogens modulate plant cell structure and function by secreting effectors into host tissues. Effectors typically function by associating with host molecules and modulating their activities. This study aimed to identify the host processes targeted by the RXLR class of host-translocated effectors of the potato blight pathogen Phytophthora infestans. To this end, we performed an in planta protein-protein interaction screen by transiently expressing P. infestans RXLR effectors in Nicotiana benthamiana leaves followed by coimmunoprecipitation and liquid chromatography-tandem mass spectrometry. This screen generated an effector-host protein interactome matrix of 59 P. infestans RXLR effectors x 586 N. benthamiana proteins. Classification of the host interactors into putative functional categories revealed over 35 biological processes possibly targeted by P. infestans. We further characterized the PexRD12/31 family of RXLR-WY effectors, which associate and colocalize with components of the vesicle trafficking machinery. One member of this family, PexRD31, increased the number of FYVE positive vesicles in N. benthamiana cells. FYVE positive vesicles also accumulated in leaf cells near P. infestans hyphae, indicating that the pathogen may enhance endosomal trafficking during infection. This interactome dataset will serve as a useful resource for functional studies of P. infestans effectors and of effector-targeted host processes.


Asunto(s)
Interacciones Huésped-Patógeno/fisiología , Phytophthora infestans/fisiología , Proteínas/metabolismo , Vesículas Transportadoras/metabolismo , Membrana Celular/metabolismo , Endosomas/metabolismo , Enfermedades de las Plantas/microbiología , Proteínas de Plantas/metabolismo , Mapas de Interacción de Proteínas , Proteínas SNARE/metabolismo , Nicotiana/metabolismo , Nicotiana/microbiología
5.
Sci Rep ; 10(1): 1187, 2020 Jan 21.
Artículo en Inglés | MEDLINE | ID: mdl-31959847

RESUMEN

An amendment to this paper has been published and can be accessed via a link at the top of the paper.

6.
Nature ; 574(7778): 423-427, 2019 10.
Artículo en Inglés | MEDLINE | ID: mdl-31597961

RESUMEN

The blast fungus Magnaporthe oryzae gains entry to its host plant by means of a specialized pressure-generating infection cell called an appressorium, which physically ruptures the leaf cuticle1,2. Turgor is applied as an enormous invasive force by septin-mediated reorganization of the cytoskeleton and actin-dependent protrusion of a rigid penetration hypha3. However, the molecular mechanisms that regulate the generation of turgor pressure during appressorium-mediated infection of plants remain poorly understood. Here we show that a turgor-sensing histidine-aspartate kinase, Sln1, enables the appressorium to sense when a critical turgor threshold has been reached and thereby facilitates host penetration. We found that the Sln1 sensor localizes to the appressorium pore in a pressure-dependent manner, which is consistent with the predictions of a mathematical model for plant infection. A Δsln1 mutant generates excess intracellular appressorium turgor, produces hyper-melanized non-functional appressoria and does not organize the septins and polarity determinants that are required for leaf infection. Sln1 acts in parallel with the protein kinase C cell-integrity pathway as a regulator of cAMP-dependent signalling by protein kinase A. Pkc1 phosphorylates the NADPH oxidase regulator NoxR and, collectively, these signalling pathways modulate appressorium turgor and trigger the generation of invasive force to cause blast disease.


Asunto(s)
Ascomicetos/metabolismo , Oryza/microbiología , Enfermedades de las Plantas/microbiología , Proteínas de Plantas/metabolismo , Proteínas Fúngicas/metabolismo , Hifa , NADPH Oxidasas/metabolismo , Oryza/fisiología
7.
PLoS Biol ; 17(7): e3000373, 2019 07.
Artículo en Inglés | MEDLINE | ID: mdl-31329577

RESUMEN

Autophagy-related protein 8 (ATG8) is a highly conserved ubiquitin-like protein that modulates autophagy pathways by binding autophagic membranes and a number of proteins, including cargo receptors and core autophagy components. Throughout plant evolution, ATG8 has expanded from a single protein in algae to multiple isoforms in higher plants. However, the degree to which ATG8 isoforms have functionally specialized to bind distinct proteins remains unclear. Here, we describe a comprehensive protein-protein interaction resource, obtained using in planta immunoprecipitation (IP) followed by mass spectrometry (MS), to define the potato ATG8 interactome. We discovered that ATG8 isoforms bind distinct sets of plant proteins with varying degrees of overlap. This prompted us to define the biochemical basis of ATG8 specialization by comparing two potato ATG8 isoforms using both in vivo protein interaction assays and in vitro quantitative binding affinity analyses. These experiments revealed that the N-terminal ß-strand-and, in particular, a single amino acid polymorphism-underpins binding specificity to the substrate PexRD54 by shaping the hydrophobic pocket that accommodates this protein's ATG8-interacting motif (AIM). Additional proteomics experiments indicated that the N-terminal ß-strand shapes the broader ATG8 interactor profiles, defining interaction specificity with about 80 plant proteins. Our findings are consistent with the view that ATG8 isoforms comprise a layer of specificity in the regulation of selective autophagy pathways in plants.


Asunto(s)
Familia de las Proteínas 8 Relacionadas con la Autofagia/metabolismo , Autofagia , Proteínas de Plantas/metabolismo , Plantas/metabolismo , Familia de las Proteínas 8 Relacionadas con la Autofagia/química , Familia de las Proteínas 8 Relacionadas con la Autofagia/genética , Inmunoprecipitación/métodos , Espectrometría de Masas/métodos , Filogenia , Proteínas de Plantas/química , Proteínas de Plantas/genética , Plantas/clasificación , Plantas/genética , Plantas Modificadas Genéticamente , Unión Proteica , Conformación Proteica en Lámina beta , Isoformas de Proteínas/química , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Proteómica/métodos , Solanum tuberosum/genética , Solanum tuberosum/metabolismo , Nicotiana/genética , Nicotiana/metabolismo
8.
Elife ; 72018 06 22.
Artículo en Inglés | MEDLINE | ID: mdl-29932422

RESUMEN

During plant cell invasion, the oomycete Phytophthora infestans remains enveloped by host-derived membranes whose functional properties are poorly understood. P. infestans secretes a myriad of effector proteins through these interfaces for plant colonization. Recently we showed that the effector protein PexRD54 reprograms host-selective autophagy by antagonising antimicrobial-autophagy receptor Joka2/NBR1 for ATG8CL binding (Dagdas et al., 2016). Here, we show that during infection, ATG8CL/Joka2 labelled defense-related autophagosomes are diverted toward the perimicrobial host membrane to restrict pathogen growth. PexRD54 also localizes to autophagosomes across the perimicrobial membrane, consistent with the view that the pathogen remodels host-microbe interface by co-opting the host autophagy machinery. Furthermore, we show that the host-pathogen interface is a hotspot for autophagosome biogenesis. Notably, overexpression of the early autophagosome biogenesis protein ATG9 enhances plant immunity. Our results implicate selective autophagy in polarized immune responses of plants and point to more complex functions for autophagy than the widely known degradative roles.


Asunto(s)
Autofagia/genética , Interacciones Huésped-Patógeno , Phytophthora infestans/genética , Enfermedades de las Plantas/genética , Proteínas de Plantas/genética , Solanum tuberosum/genética , ATPasas Asociadas con Actividades Celulares Diversas/genética , ATPasas Asociadas con Actividades Celulares Diversas/inmunología , Autofagosomas/inmunología , Autofagosomas/parasitología , Autofagia/inmunología , Familia de las Proteínas 8 Relacionadas con la Autofagia/genética , Familia de las Proteínas 8 Relacionadas con la Autofagia/inmunología , Proteínas Portadoras/genética , Proteínas Portadoras/inmunología , Regulación de la Expresión Génica , Proteínas de la Membrana/genética , Proteínas de la Membrana/inmunología , Phytophthora infestans/crecimiento & desarrollo , Phytophthora infestans/patogenicidad , Células Vegetales/inmunología , Células Vegetales/parasitología , Enfermedades de las Plantas/inmunología , Enfermedades de las Plantas/parasitología , Inmunidad de la Planta/genética , Proteínas de Plantas/inmunología , Unión Proteica , Transducción de Señal , Solanum tuberosum/inmunología , Solanum tuberosum/parasitología
9.
Sci Rep ; 7(1): 945, 2017 04 19.
Artículo en Inglés | MEDLINE | ID: mdl-28424497

RESUMEN

Magnaporthe oryzae, the causal agent of blast disease, is one of the most destructive plant pathogens, causing significant yield losses on staple crops such as rice and wheat. The fungus infects plants with a specialized cell called an appressorium, whose development is tightly regulated by MAPK signaling pathways following the activation of upstream sensors in response to environmental stimuli. Here, we show the expression of the Glycogen synthase kinase 3 (GSK3) MoGSK1 in M. oryzae is regulated by Mps1 MAP kinase, particularly under the stressed conditions. Thus, MoGSK1 is functionally characterized in this study. MoGsk1 is functionally homologues to the Saccharomyces cerevisiae GSK3 homolog MCK1. Gene replacement of MoGSK1 caused significant delay in mycelial growth, complete loss of conidiation and inability to penetrate the host surface by mycelia-formed appressorium-like structures, consequently resulting in loss of pathogenicity. However, the developmental and pathogenic defects of Δmogsk1 are recovered via the heterologous expression of Fusarium graminearum GSK3 homolog gene FGK3, whose coding products also shows the similar cytoplasmic localization as MoGsk1 does in M. oryzae. By contrast, overexpression of MoGSK1 produced deformed appressoria in M. oryzae. In summary, our results suggest that MoGsk1, as a highly conservative signal modulator, dictates growth, conidiation and pathogenicity of M. oryzae.


Asunto(s)
Glucógeno Sintasa Quinasa 3/metabolismo , Magnaporthe/fisiología , Proteínas Quinasas Activadas por Mitógenos/metabolismo , Plantas/microbiología , Regulación del Desarrollo de la Expresión Génica , Regulación Fúngica de la Expresión Génica , Glucógeno Sintasa Quinasa 3/genética , Magnaporthe/enzimología , Magnaporthe/genética , Proteínas de Plantas/metabolismo , Plantas/enzimología , Transducción de Señal , Estrés Fisiológico
10.
Trends Plant Sci ; 22(3): 204-214, 2017 03.
Artículo en Inglés | MEDLINE | ID: mdl-28038982

RESUMEN

Selective autophagy is a conserved homeostatic pathway that involves engulfment of specific cargo molecules into specialized organelles called autophagosomes. The ubiquitin-like protein ATG8 is a central player of the autophagy network that decorates autophagosomes and binds to numerous cargo receptors. Although highly conserved across eukaryotes, ATG8 diversified from a single protein in algae to multiple isoforms in higher plants. We present a phylogenetic overview of 376 ATG8 proteins across the green plant lineage that revealed family-specific ATG8 clades. Because these clades differ in fixed amino acid polymorphisms, they provide a mechanistic framework to test whether distinct ATG8 clades are functionally specialized. We propose that ATG8 expansion may have contributed to the diversification of selective autophagy pathways in plants.


Asunto(s)
Familia de las Proteínas 8 Relacionadas con la Autofagia/metabolismo , Autofagia/fisiología , Proteínas de Plantas/metabolismo , Autofagosomas/metabolismo , Autofagia/genética , Familia de las Proteínas 8 Relacionadas con la Autofagia/genética , Proteínas de Plantas/genética
11.
Cell Microbiol ; 19(1)2017 01.
Artículo en Inglés | MEDLINE | ID: mdl-27302335

RESUMEN

The oomycete pathogen Phytophthora infestans causes potato late blight, and as a potato and tomato specialist pathogen, is seemingly poorly adapted to infect plants outside the Solanaceae. Here, we report the unexpected finding that P. infestans can infect Arabidopsis thaliana when another oomycete pathogen, Albugo laibachii, has colonized the host plant. The behaviour and speed of P. infestans infection in Arabidopsis pre-infected with A. laibachii resemble P. infestans infection of susceptible potato plants. Transcriptional profiling of P. infestans genes during infection revealed a significant overlap in the sets of secreted-protein genes that are induced in P. infestans upon colonization of potato and susceptible Arabidopsis, suggesting major similarities in P. infestans gene expression dynamics on the two plant species. Furthermore, we found haustoria of A. laibachii and P. infestans within the same Arabidopsis cells. This Arabidopsis-A. laibachii-P. infestans tripartite interaction opens up various possibilities to dissect the molecular mechanisms of P. infestans infection and the processes occurring in co-infected Arabidopsis cells.


Asunto(s)
Arabidopsis/microbiología , Interacciones Microbianas , Oomicetos/crecimiento & desarrollo , Enfermedades de las Plantas/microbiología , Perfilación de la Expresión Génica , Interacciones Huésped-Patógeno , Oomicetos/genética , Solanum tuberosum/microbiología
12.
New Phytol ; 212(4): 888-895, 2016 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-27582271

RESUMEN

888 I. 888 II. 889 III. 889 IV. 889 V. 891 VI. 891 VII. 891 VIII. 892 IX. 892 X. 893 XI. 893 893 References 893 SUMMARY: Elicitins are structurally conserved extracellular proteins in Phytophthora and Pythium oomycete pathogen species. They were first described in the late 1980s as abundant proteins in Phytophthora culture filtrates that have the capacity to elicit hypersensitive (HR) cell death and disease resistance in tobacco. Later, they became well-established as having features of microbe-associated molecular patterns (MAMPs) and to elicit defences in a variety of plant species. Research on elicitins culminated in the recent cloning of the elicitin response (ELR) cell surface receptor-like protein, from the wild potato Solanum microdontum, which mediates response to a broad range of elicitins. In this review, we provide an overview on elicitins and the plant responses they elicit. We summarize the state of the art by describing what we consider to be the nine most important features of elicitin biology.


Asunto(s)
Oomicetos/metabolismo , Proteínas/metabolismo , Secuencia de Aminoácidos , Resistencia a la Enfermedad , Enfermedades de las Plantas/microbiología , Plantas/inmunología , Plantas/microbiología , Proteínas/química
13.
J Biol Chem ; 291(38): 20270-20282, 2016 09 16.
Artículo en Inglés | MEDLINE | ID: mdl-27458016

RESUMEN

Filamentous plant pathogens deliver effector proteins to host cells to promote infection. The Phytophthora infestans RXLR-type effector PexRD54 binds potato ATG8 via its ATG8 family-interacting motif (AIM) and perturbs host-selective autophagy. However, the structural basis of this interaction remains unknown. Here, we define the crystal structure of PexRD54, which includes a modular architecture, including five tandem repeat domains, with the AIM sequence presented at the disordered C terminus. To determine the interface between PexRD54 and ATG8, we solved the crystal structure of potato ATG8CL in complex with a peptide comprising the effector's AIM sequence, and we established a model of the full-length PexRD54-ATG8CL complex using small angle x-ray scattering. Structure-informed deletion of the PexRD54 tandem domains reveals retention of ATG8CL binding in vitro and in planta This study offers new insights into structure/function relationships of oomycete RXLR effectors and how these proteins engage with host cell targets to promote disease.


Asunto(s)
Familia de las Proteínas 8 Relacionadas con la Autofagia , Phytophthora infestans , Enfermedades de las Plantas , Proteínas de Plantas , Solanum tuberosum , Familia de las Proteínas 8 Relacionadas con la Autofagia/química , Familia de las Proteínas 8 Relacionadas con la Autofagia/genética , Familia de las Proteínas 8 Relacionadas con la Autofagia/metabolismo , Cristalografía por Rayos X , Phytophthora infestans/química , Phytophthora infestans/genética , Phytophthora infestans/metabolismo , Proteínas de Plantas/química , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Dominios Proteicos , Estructura Cuaternaria de Proteína , Solanum tuberosum/química , Solanum tuberosum/genética , Solanum tuberosum/metabolismo
14.
Elife ; 52016 Jan 14.
Artículo en Inglés | MEDLINE | ID: mdl-26765567

RESUMEN

Plants use autophagy to safeguard against infectious diseases. However, how plant pathogens interfere with autophagy-related processes is unknown. Here, we show that PexRD54, an effector from the Irish potato famine pathogen Phytophthora infestans, binds host autophagy protein ATG8CL to stimulate autophagosome formation. PexRD54 depletes the autophagy cargo receptor Joka2 out of ATG8CL complexes and interferes with Joka2's positive effect on pathogen defense. Thus, a plant pathogen effector has evolved to antagonize a host autophagy cargo receptor to counteract host defenses.


Asunto(s)
Autofagia , Proteínas Fúngicas/metabolismo , Interacciones Huésped-Patógeno , Phytophthora infestans/patogenicidad , Enfermedades de las Plantas/microbiología , Proteínas de Plantas/metabolismo , Solanum tuberosum/microbiología , Enfermedades de las Plantas/inmunología , Unión Proteica , Solanum tuberosum/inmunología
15.
Artículo en Inglés | MEDLINE | ID: mdl-28080985

RESUMEN

Oomycetes, or water moulds, are fungal-like organisms phylogenetically related to algae. They cause devastating diseases in both plants and animals. Here, we describe seven oomycete species that are emerging or re-emerging threats to agriculture, horticulture, aquaculture and natural ecosystems. They include the plant pathogens Phytophthora infestans, Phytophthora palmivora, Phytophthora ramorum, Plasmopara obducens, and the animal pathogens Aphanomyces invadans, Saprolegnia parasitica and Halioticida noduliformans For each species, we describe its pathology, importance and impact, discuss why it is an emerging threat and briefly review current research activities.This article is part of the themed issue 'Tackling emerging fungal threats to animal health, food security and ecosystem resilience'.


Asunto(s)
Enfermedades de los Animales , Enfermedades Transmisibles Emergentes , Oomicetos/fisiología , Enfermedades de las Plantas , Plantas/microbiología , Enfermedades de los Animales/epidemiología , Enfermedades de los Animales/microbiología , Animales , Aphanomyces/fisiología , Enfermedades Transmisibles Emergentes/epidemiología , Enfermedades Transmisibles Emergentes/microbiología , Enfermedades Transmisibles Emergentes/veterinaria , Incidencia , Phytophthora/fisiología , Enfermedades de las Plantas/microbiología , Saprolegnia/fisiología
16.
Cell Host Microbe ; 18(6): 637-8, 2015 Dec 09.
Artículo en Inglés | MEDLINE | ID: mdl-26651936

RESUMEN

Secreted peroxidases are well-known components of damage-induced defense responses in plants. A recent study in Nature (Turrà et al., 2015) has revealed that these enzymes can inadvertently serve as reporters of wounded sites and constitute an "Achilles heel," allowing adapted pathogens to track and enter host tissue.


Asunto(s)
Fusarium/metabolismo , Interacciones Huésped-Patógeno , Peroxidasas/metabolismo , Receptores del Factor de Conjugación/metabolismo , Solanum lycopersicum/metabolismo , Solanum lycopersicum/microbiología , Tropismo/fisiología
17.
Plant Cell ; 27(11): 3277-89, 2015 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-26566920

RESUMEN

Magnaporthe oryzae is the causal agent of rice blast disease, the most devastating disease of cultivated rice (Oryza sativa) and a continuing threat to global food security. To cause disease, the fungus elaborates a specialized infection cell called an appressorium, which breaches the cuticle of the rice leaf, allowing the fungus entry to plant tissue. Here, we show that the exocyst complex localizes to the tips of growing hyphae during vegetative growth, ahead of the Spitzenkörper, and is required for polarized exocytosis. However, during infection-related development, the exocyst specifically assembles in the appressorium at the point of plant infection. The exocyst components Sec3, Sec5, Sec6, Sec8, and Sec15, and exocyst complex proteins Exo70 and Exo84 localize specifically in a ring formation at the appressorium pore. Targeted gene deletion, or conditional mutation, of genes encoding exocyst components leads to impaired plant infection. We demonstrate that organization of the exocyst complex at the appressorium pore is a septin-dependent process, which also requires regulated synthesis of reactive oxygen species by the NoxR-dependent Nox2 NADPH oxidase complex. We conclude that septin-mediated assembly of the exocyst is necessary for appressorium repolarization and host cell invasion.


Asunto(s)
Proteínas Fúngicas/metabolismo , Magnaporthe/fisiología , Enfermedades de las Plantas/microbiología , Septinas/metabolismo , Hifa/metabolismo , Inmunoprecipitación , Subunidades de Proteína/metabolismo , Transporte de Proteínas , Especies Reactivas de Oxígeno/metabolismo , Esporas Fúngicas/metabolismo , Fracciones Subcelulares/metabolismo
18.
Traffic ; 16(2): 204-26, 2015 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-25430691

RESUMEN

A number of plant pathogenic and symbiotic microbes produce specialized cellular structures that invade host cells where they remain enveloped by host-derived membranes. The mechanisms underlying the biogenesis and functions of host-microbe interfaces are poorly understood. Here, we show that plant late endocytic trafficking is diverted toward the extrahaustorial membrane (EHM); a host-pathogen interface that develops in plant cells invaded by Irish potato famine pathogen Phytophthora infestans. A late endosome and tonoplast marker protein Rab7 GTPase RabG3c, but not a tonoplast-localized sucrose transporter, is recruited to the EHM, suggesting specific rerouting of vacuole-targeted late endosomes to a host-pathogen interface. We revealed the dynamic nature of this process by showing that, upon activation, a cell surface immune receptor traffics toward the haustorial interface. Our work provides insight into the biogenesis of the EHM and reveals dynamic processes that recruit membrane compartments and immune receptors to this host-pathogen interface.


Asunto(s)
Endocitosis , Endosomas/metabolismo , Interacciones Huésped-Patógeno , Nicotiana/metabolismo , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Proteínas de Transporte de Membrana/genética , Proteínas de Transporte de Membrana/metabolismo , Phytophthora infestans/patogenicidad , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Proteínas Quinasas/genética , Proteínas Quinasas/metabolismo , Proteínas Serina-Treonina Quinasas/genética , Proteínas Serina-Treonina Quinasas/metabolismo , Transporte de Proteínas , Nicotiana/genética , Nicotiana/microbiología , Proteínas de Unión al GTP rab/genética , Proteínas de Unión al GTP rab/metabolismo
19.
Plant Physiol ; 165(3): 1005-1018, 2014 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-24808104

RESUMEN

Filamentous pathogens such as the oomycete Phytophthora infestans infect plants by developing specialized structures termed haustoria inside the host cells. Haustoria are thought to enable the secretion of effector proteins into the plant cells. Haustorium biogenesis, therefore, is critical for pathogen accommodation in the host tissue. Haustoria are enveloped by a specialized host-derived membrane, the extrahaustorial membrane (EHM), which is distinct from the plant plasma membrane. The mechanisms underlying the biogenesis of the EHM are unknown. Remarkably, several plasma membrane-localized proteins are excluded from the EHM, but the remorin REM1.3 accumulates around P. infestans haustoria. Here, we used overexpression, colocalization with reporter proteins, and superresolution microscopy in cells infected by P. infestans to reveal discrete EHM domains labeled by REM1.3 and the P. infestans effector AVRblb2. Moreover, SYNAPTOTAGMIN1, another previously identified perihaustorial protein, localized to subdomains that are mainly not labeled by REM1.3 and AVRblb2. Functional characterization of REM1.3 revealed that it is a susceptibility factor that promotes infection by P. infestans. This activity, and REM1.3 recruitment to the EHM, require the REM1.3 membrane-binding domain. Our results implicate REM1.3 membrane microdomains in plant susceptibility to an oomycete pathogen.

20.
Nat Commun ; 4: 1996, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-23774898

RESUMEN

To cause plant diseases, pathogenic micro-organisms secrete effector proteins into host tissue to suppress immunity and support pathogen growth. Bacterial pathogens have evolved several distinct secretion systems to target effector proteins, but whether fungi, which cause the major diseases of most crop species, also require different secretory mechanisms is not known. Here we report that the rice blast fungus Magnaporthe oryzae possesses two distinct secretion systems to target effectors during plant infection. Cytoplasmic effectors, which are delivered into host cells, preferentially accumulate in the biotrophic interfacial complex, a novel plant membrane-rich structure associated with invasive hyphae. We show that the biotrophic interfacial complex is associated with a novel form of secretion involving exocyst components and the Sso1 t-SNARE. By contrast, effectors that are secreted from invasive hyphae into the extracellular compartment follow the conventional secretory pathway. We conclude that the blast fungus has evolved distinct secretion systems to facilitate tissue invasion.


Asunto(s)
Proteínas Fúngicas/metabolismo , Magnaporthe/patogenicidad , Oryza/microbiología , Enfermedades de las Plantas/microbiología , Brefeldino A/farmacología , Membrana Celular/efectos de los fármacos , Membrana Celular/metabolismo , Citoplasma/efectos de los fármacos , Citoplasma/metabolismo , Hifa/citología , Hifa/efectos de los fármacos , Hifa/metabolismo , Magnaporthe/citología , Magnaporthe/efectos de los fármacos , Modelos Biológicos , Mutación/genética , Oryza/efectos de los fármacos , Proteínas SNARE/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...